Naturally Occurring Radioactive Material (NORM) Wastes from Oil Exploration

> S. Landsberger Nuclear Engineering Teaching Lab University of Texas Austin, Texas, USA

Collaborators

in a Two Year Effort

S. G. Landsberger, G. George Enviroklean Product Development, Inc. (EPDI) Houston, Texas

G. Kuzmin, D. Millsap, K. Dayman, C. Lu University of Texas

D. Tamalis, J. Louis-Jean, G. Dort, and T. Dudley Florida Memorial University Miami Gardens, Florida

Outline

- Energy Needs
- NORM and TENORM in Oil Fields
- Passive Counting
- Neutron Activation Analysis
- Worker Safety Training
- Conclusions

University-Industry Collaboration

Nuclear Engineering Teaching Lab

Enviroklean Product Development, Inc. A State of Texas Licensed "NORM" Decontamination Company and Chemical Manufacturer

World Energy Needs

North Dakota Fracking

NORM/TENORM in Oil Fields

- ~85 million barrels of oil each day is produced
 - ~every 12 days 1 billion barrels is produced/consumed
 - ~31 billion barrels a year
 - USA uses about 25% of oil production
- Expanding economies of BRIC, Southeast Asia and Middle East
- Much more oil and gas maybe needed for the foreseeable future

Arial distribution in the continuous United (US Department of the Interior, 1999)States producing oil and gas wells through1994.

Geological Information

Uranium and Thorium collect between layers of sandstones.

Hydrocarbons collect in "traps" made by faults and shales.

www.loyno.edu/lucec/images/saltdome.jpg

Geological Information

- ²³⁸U and ²³²Th are naturally present in the Earth's crust and mantle.
- Found in small amounts and can be significant components in other minerals
- Geologic Locations
 - Shales tend to absorb radionuclides and act as traps for hydrocarbons.
 - Deposits can be located at the boundaries of sandstone layers.

Geological Information

- Decay products of ${}^{238}U$ and ${}^{232}Th$ are ${}^{226}Ra$ ($t_{1/2} = 1630$ years) and ${}^{228}Ra$ ($t_{1/2} = 5.8$ years) respectively
- ²³⁸U and ²³²Th are insoluble and usually remain in place in the formation.
- ²²⁶Ra and ²²⁸Ra are more soluble than their parents and are mobilized by liquid
- Uranium, Thorium, and Radium "have an affinity for crude oil"

Oil and Gas Wells

- Three phases of oil and gas wells will be discussed.
 - Drilling and Workover Operations
 - Production
 - Abandonment

How Norm Is Brought to the Surface

- NORM is brought up to the surface by the transport of gas and oil products
- Produced water

- Drilling mud and sludge
- Evaporation ponds and pits

Drilling and Workover Operations

Drilling mud (a liquid used to lubricate the bit, bring cuttings to the surface, and hold back the formation) also come in contact with NORM and can be contaminated.

Pipes with Radioactive Scale in the Oil Field

Formation of Radioactive Sludge in Production Equipment

Sludge

Interferences

- 185.2 keV gamma-ray of ²³⁵U on the 186.2 keV of ²²⁶Ra
- Uranium is from one to many orders of magnitude less radium
- Negligible effect

- coincidence summing
- Negligible for ²²⁶Ra and ²¹⁰Pb
- 9% effect for the 911 keV photon for ²²⁸Ac used to determine
 ²²⁸Ra

Self-Attenuation vs Gamma-Ray Energy

	Sludge (Bq/kg)	Scale (Bq/kg)	Soil (Bq/kg)	Water (Bq/L)
²¹⁰ Pb	5148 ± 222	1370 ± 74	22, 889 ± 740	815 ± 37
²²⁶ Ra	59,000 ± 300	2630 ± 148	65,296 ± 3296	1481 ± 74
²²⁸ Ac (²²⁸ Ra)	28,501 ± 1493	565 ± 40	154 ± 12	251 ± 16

Neutron Activation Analysis

Group II Elements

Group	1	2	3	4	5	6	7
Period 1	1 H						
2	3 Li	4 Be					
3	11 Na	12 Mg					
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Мо	43 Tc
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	⁷⁵ Re
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh

Results for NORM Ba, Ca, Sr and In

	Barium (%)	Calcium (%)	Strontium (%)	Indium (µg/g)
Soil	18.54 ± 0.64%	5.97 ± 0.09%	1.95 ± 0.07%	0.033 ± 0.003
Scale	1.68 ± 0.06%	4.61 ± 0.11%	1.09 ± 0.04%	1.27 ± 0.02
Solid	22.04 ± 0.76%	1.50 ± 0.05%	5.28 ± 0.20%	0.88 ± 0.01

Element	Concentration
Aluminum (%)	0.53 ± 0.02
Barium (µg/g)	8936 ± 717
Bromine (µg/g)	223± 11
Calcium (%)	11.2 ± 0.7
Chlorine (%)	6.41 ± 0.48
Chromium (µg/g)	53 ± 2
Cobalt (µg/g)	14.6 ± 0.6
Indium (µg/g)	1.64 ± 0.08
Iron (%)	24.9 ± 0.5
Manganese (µg/g)	1053 ± 38

Nickel (µg/g)	54 ± 9
Scandium (µg/g)	0.21± 0.02
Silicon (%)	1.08 ± 0.14
Sodium (%)	3.24 ± 0.09
Strontium (µg/g)	12484 ± 1389
Uranium (µg/g)	0.08 ± 0.02
Vanadium (µg/g)	ND^*
Zinc (µg/g)	288 ± 8

Ratio	Scale	Seawater
Cl/Na	1.97	1.8
Br/Cl	3.5 X 10 ⁻³	6.2 x 10 ⁻³
I/Cl	5 x 10 ⁻⁴	3.3 x 10 ⁻⁶

Who Can Benefit from NORM Training

- Employees working with NORM
 - Either with decontamination or maintenance of equipment in the oil and gas field
- Employees of Oil and Gas Companies
 - Anyone from a field worker to an executive
- Teaching emergency procedures of the company is important
- During the class each person should know the basic emergency procedures that happen on job site

Personal Protective Equipment (PPE)

• Gloves, fire retardant clothing, hard hat, safety glasses, steel toed boots, mask, self contained breathing apparatus, H₂S monitor, TLD badge

Teaching Health Risks from NORM Exposure

- It is important to stress the importance of health effects when working with NORM both to the worker and the general public
- The radionuclides that pose the most risk in the oil and gas field are ²²⁶Ra, ²²⁸Ra, ²²²Rn and ²¹⁰Pb
 - More detail on the specific side effects is presented
- "Frisking Out" is also revisited during this part of the course

Obstacles of Training in Texas Oil and Gas Field

- English may not be the first language of the participants in the class
- There is a variety of educations levels
 - Which means teaching to all levels of education
 - It is critical to go over the basics of radiation including basic chemistry

Overall Educational Goals

- Continual Education
- workers are continuing to be reinforced with the key points they learned during the training
- On the job site training
- keep up with any changing laws or regulations from state government agencies